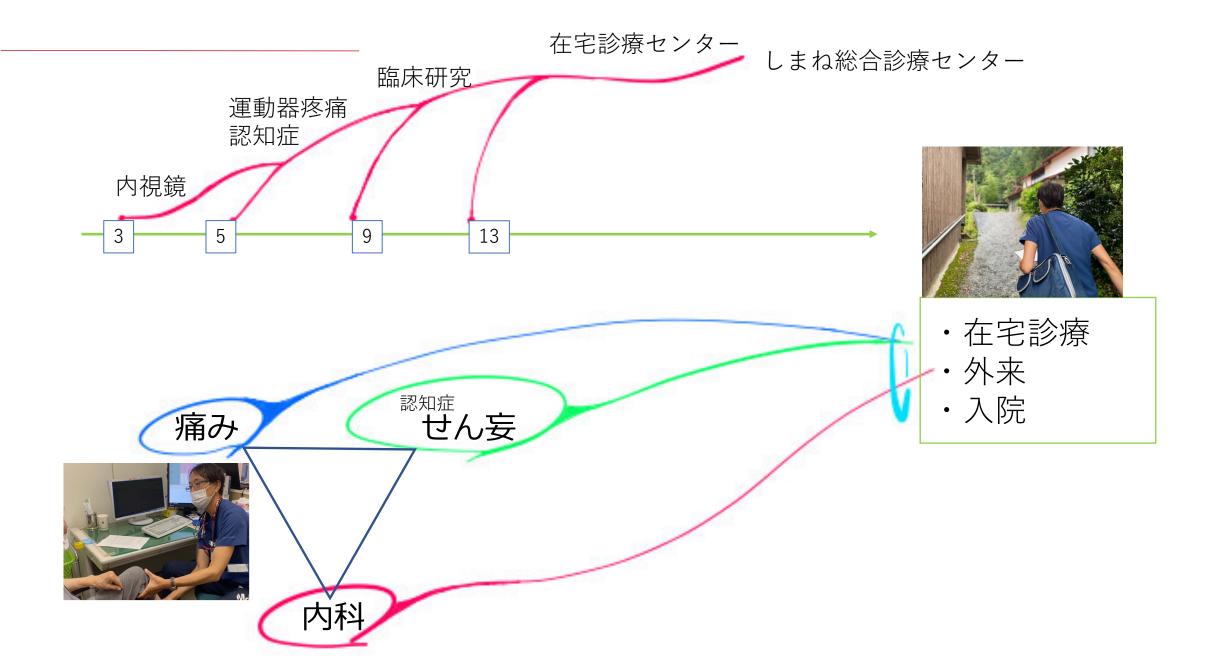
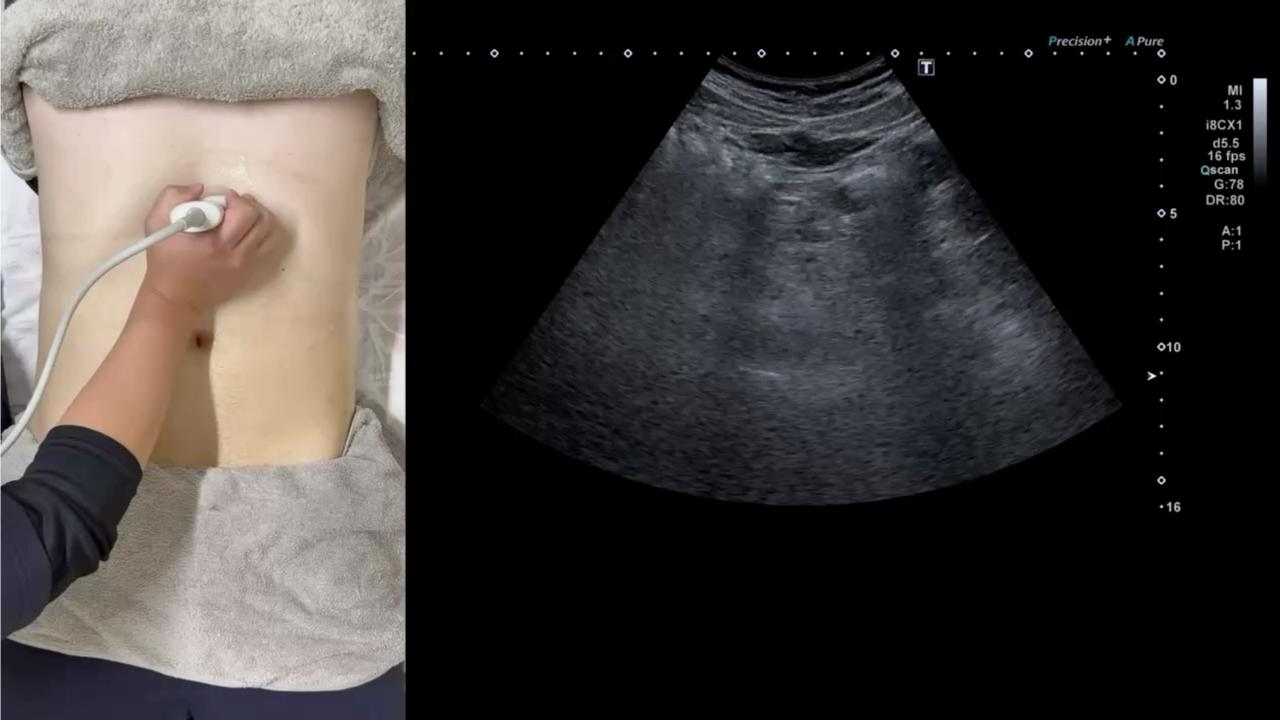
血培採取手順の改訂による提出件数と汚染率の変化 地方病院における実践的評価


○遠藤健史(町立奥出雲病院 総合診療科)


竹下千紘(佐賀中部病院 総合診療科)

藤原辰也(益田赤十字病院総合診療内科)

安部孝文(島根大学医学部地域包括ケア教育研究センター)

木島庸貴(木島医院)

WELCOME! Student POCUS

2023 2024

WELCOME!

Student POCUS

2023.7.15 Sat

League

TIME TO SONOGRAPHY 中尾 優実 市谷 碧菜

島根大学

本大会をエコースキルアップに繋げます。 また他大学のみなさんと 情報交換できることを楽しみにしています。

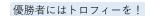
エース 安村大樹(M5)

金沢大学

第2の聴診器を使いこなす 次世代の臨床医を目指して頑張ります⁵

浜松医科大学

毎週エコーを用いた勉強会を開催! エコー練習だけでなく、 その断面を解剖でも学んでいます。 また救急現場のシミュレーションも行い 全国どこにも負けない自信があります。



宮崎 皓平 板谷 耀平

和歌山県立大学

『目指せ!エコーマスター!』 この学生セッションをきっかけに 先輩から後輩への技術伝承に 期待しています。

Student POCUS

2023.7.15 Sat

League

2023

2025

Student POCUS League

大学 大学

信

学

13大学から

ご応募いただいきました! ありがとうございました🧾

PSMA

JPOCUS学生-研修医支部

@PSMAJPOCUS

挑戦者求む!!

第4回Student POCUS League 2026年5月30-31日

@東京国際フォーラム

日本ポイントオブケア超音波学会日本超音波学会 合同開催

町立奥出雲病院

一般病棟(現在は地域包括医療病棟) 51床 地域包括ケア病棟 47床 介護医療院 60床

訪問医療

薬

活動

睡眠

栄養

はじめに

• 菌血症は致死率が高く、血液培養検査(以下、血培)により診断する。

適切な採取により菌の検出率増加、汚染率低下が期待できる[1]とされるが、地方小規模病院では提出数少・汚染率高が課題である[3,4]

標準化や教育で提出数の増加、汚染率低下の報告あるが、 低コストな体制変更が有効かは不明である

町立奥出雲病院

島根県 山間地 病床数98床(2次医療機関)

2021年4月1日: ここを介入点とする

- ・総合診療科(以下、総診)医師着任:自治医大卒13年目、4年目
- ・血液培養検査(以下、血培)マニュアル改訂

介入点:2021年4月1日=当院に総合診療科を新設し、総合診療医2名着任した。

そして血培マニュアルを下記のように改訂した。

	介入前=Pre期 2018年4月~2021年3月	介入後=Post期 2021年4月~2024年3月
消毒方法	10%ポピドンヨード	1%クロルヘキシジンアルコール
採取者	2名で 医師/看護師 主に医師	1名で 医師/看護師 主に看護師
清潔操作	滅菌手袋 清潔ガウン 滅菌ドレープ使用	非滅菌も可

〈主要評価項目〉

血培提出セット数 汚染率

〈副次評価項目〉

複数セット採取率 喀痰/尿培養提出数 陽性率 外来・入院患者数 抗菌薬使用量

血培汚染の定義:

同日に複数セットの血培が提出された症例において,特定の菌種・菌属(*)が1セットのみ陽性となった場合.

*特定の菌種・菌属:

コアグラーゼ陰性ブドウ球菌, Propionibacterium acnes, Micrococcus 属, 緑色連鎖球菌, Corynebacterium 属, Bacillus 属(B. anthracis を除く)

血培陽性の定義:

同日に複数セットの血培が提出された症例において, コンタミネーションの定義に当てはまらない場合.

汚染率(%)

=コンタミネーション件数:同日に複数セット の血液培養が提出されたのべ症例数

陽性率(%)

= (陽性セット数:総提出セット数)×100

・1セット:1回の採血で得られた血液検体

日本臨床微生物学会.血液培養検査ガイド.東京:南山堂;2013. 森井大一 他.感染症誌.2016;90(3):340-345.

統計解析

Pre期とPost期の外来・入院患者数、培養件数(血液・痰・尿)、および抗菌薬DOTを比較した。

DOTおよび年齢の群間比較にはMann-WhitneyのU検定を、性別、陽性率、汚染率の比較には χ^2 検定を用いた。

また、割線時系列解析(ITSA)ではwash-out期間を設けず、 総合診療医が着任した2021年4月以降を介入後データとして解析した[10]。 すべての解析はStata/SE 17.0を用い、 有意水準は両側検定でp<0.05とした。

Table 1.1 Pre期とPost期における患者数、培養検体数の比較

	Pre期	Post期	P値
外来患者数(年平均, n)	35,550	34,981	0.51
入院患者数(年平均, n)	21,988	23,918	0.51
複数セット採取率(%)	100	100	NA
培養検体提出数(年平均, n)			
血液	62.3	182.0	<0.05
痰	111.3	126.0	0.28
尿	302.3	303.3	0.52

NA, not applicable: 両群とも100%のため検定不可

Table 1.2 点滴抗菌薬使用量(DOT*)の比較

	Pre期	Post期	P値
点滴抗菌薬DOT(累積総数)			
ペニシリン	216.7	157.6	0.13
ペニシリン(広域)	47.7	109.6	0.05
第一世代セフェム	113.4	91.8	0.28
第二世代セフェム	109.0	112.2	0.13
第三世代セフェム	209.7	176.1	0.83
第四世代セフェム	11.8	8.8	0.83
カルバペネム	50.4	20.6	<0.05
グリコペプチド	16.2	12.3	0.51
アミノグリコシド	34.5	17.3	<0.05
キノロン	0.0	7.1	<0.05
テトラサイクリン	28.2	7.3	<0.05

^{*}**DOT**(Days of Therapy) 抗菌薬1剤を使用した日数をカウントする指標

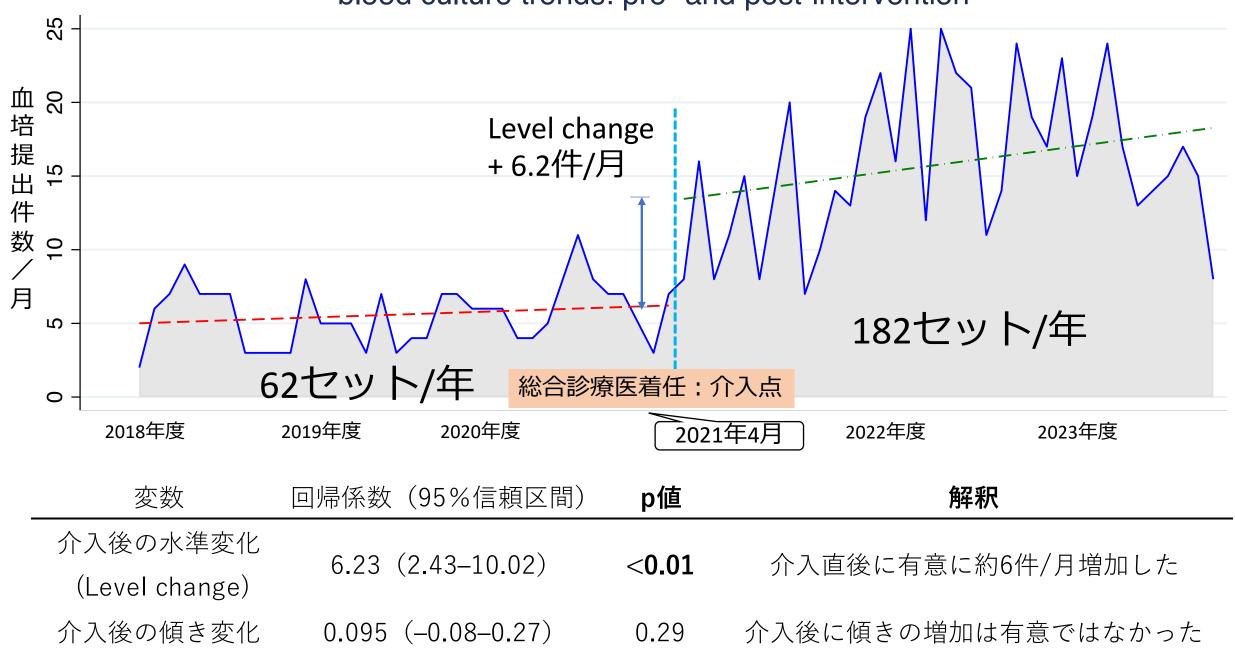
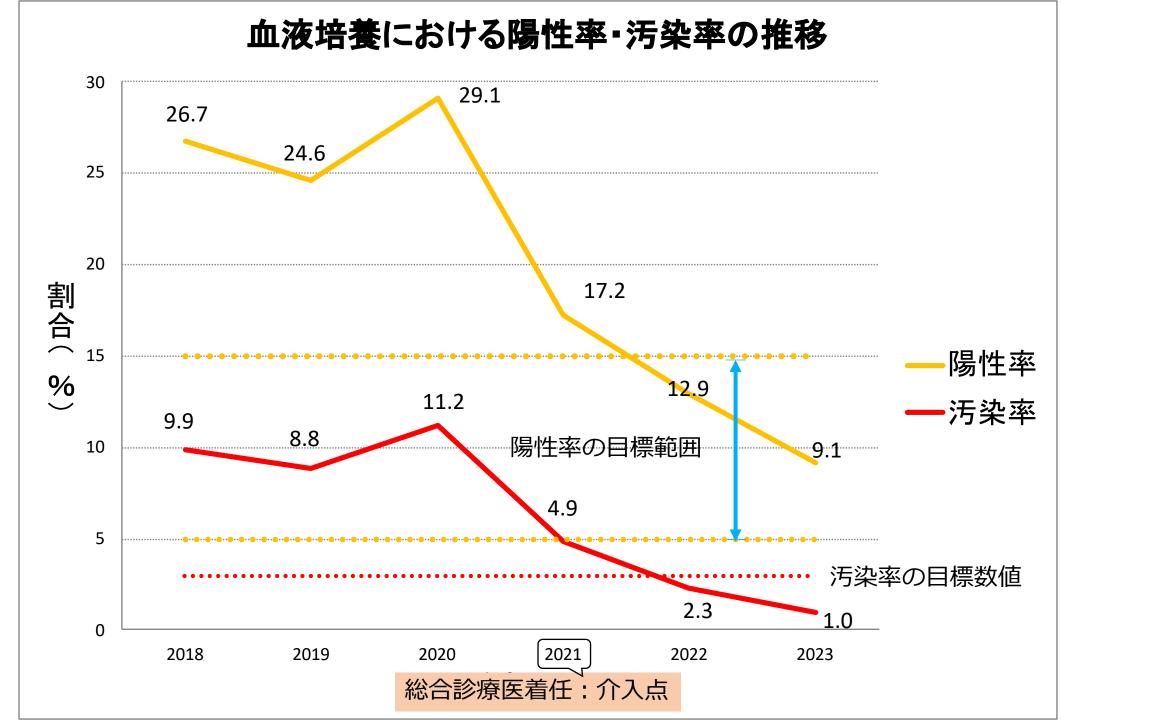



Table 2. 血液培養施行患者における年齢・性別・陽性率・汚染率の比較

	Pre群	Post群	p値
	n = 202	n = 571	
年龄(中央値、歳)	87	87	0.08
男性, (n[%])	90(44.6)	277(48.5)	0.23
血液培養陽性率(%)	50(26.7)	75(13.1)	< 0.01
血液培養汚染率(%)	20(9.9)	10(1.8)	< 0.01

提出セット数:増加傾向

〈理由〉

痰・尿の培養検査数は増えていないが、血培だけが有意に増えた。 この理由としてまず、着任した総合診療医2名が血培を重視したことが考えられる。

加えて、下記2点の理由により、医師が検査オーダーをしやすくなった。

- ・採取手順の簡素化により、採取者の時間的負担が軽減したこと。
- ・採取者が1名に減ったことにより、医師自身が検体採取しないことが増えたこと。

提出セット数増加傾向の理由

着任した総合診療医2名が、血培の重要性を強調したことが起点となった。

一方で、痰や尿の培養検査数は増えず、**血培のみが有意に増加**していた。

元来、血培は痰や尿に比べて採取の手間が大きかった。**採取手順の簡素化により時間的負担が軽減**し、さらに**1名で採取可能**となったことで、医師が検体採取を行う必要がなくなり、検査を**指示しやすい環境**が整った。

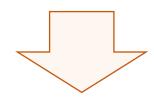
血培提出数増加、陽性率低下の意義

血液培養提出数を増やすことは、菌血症の見逃しを防ぎ、 血液検体から菌を同定することで、治療精度を高めるため重要である。

疑わしい症例に対して積極的に提出を行うことにより、 血培陽性率は5~15%が適切とされている。

汚染率低下傾向の理由

① 消毒薬の変更による効果


クロルヘキシジンは、ポピドンヨードに比べて汚染率を低下させると報告されている[3]。クロルヘキシジンによる抗菌活性に加え、アルコールによる即効的な殺菌効果が期待できる[4]。

また、乾燥時間はポピドンヨード2分に対して30秒と短く、作業効率の向上にも寄与した[5]。

② 手順の煩雑さが改善されたこと

手順の簡素化や消毒時間短縮で、清潔手技の確実性が向上したこと、及び採取機会の増加でスタッフが慣れ、操作精度の向上したことが考えられる。

DOT:外来・入院患者ともに有意な変化がみられなかった中で、 血培増加による抗生剤の不適切な増加はみられなかった。

血培の結果を踏まえた治療が増加した可能性がある。

結語

血培採取手順の見直しというシンプルな介入により、 その**件数増加と汚染率低下**を実現できることを示した。

引用文献

- 1. Fowler VG Jr. Clin Infect Dis. 2013;56:1281-3.
- 2. Fekete T. *Am J Med Sci.* 2006;332:308–12.
- 3. Mimoz O. *Ann Intern Med.* 1999;131:834-7.
- 4. Denton GW. Disinfection, Sterilization, and Preservation. 2001:321–36.
- 5. O'Grady NP. Clin Infect Dis. 2011;52:e162-93.

血液培養陽性数

50件/_{3年} ↓ 75件/_{3年}

	Pre期	Post期	P値
点滴抗菌薬DOT(累積総数)			
ペニシリン	216.7	157.6	0.13
ペニシリン(広域)	47.7	109.6	0.05
第一世代セフェム	113.4	91.8	0.28
第二世代セフェム	109.0	112.2	0.13
第三世代セフェム	209.7	176.1	0.83
第四世代セフェム	11.8	8.8	0.83
カルバペネム	50.4	20.6	<0.05
グリコペプチド	16.2	12.3	0.51
アミノグリコシド	34.5	17.3	<0.05
キノロン	0.0	7.1	<0.05
テトラサイクリン	28.2	7.3	<0.05